只记录了左右值和路径值的树型结构,个人感觉路径值更好用一点
左右值(lft, rgt)
查询很好用,但是新增删除时需要操作执行整个表的内容,存储失败时难以回滚,还会有并发冲突的问题,只适合内容稳定修改较少的表类型
新增
// +----+-------------+-------+--------+-----+-----+----------+-------------+
// | id | name | value | type | lft | rgt | parentId | valuePrefix |
// +----+-------------+-------+--------+-----+-----+----------+-------------+
// | 1 | SYSTEM_NAME | 0 | system | 1 | 28 | NULL | sys: |
// | 2 | 系统维护 | 0 | menu | 2 | 21 | 1 | sys:0: |
// | 3 | 人员管理 | 1 | page | 22 | 27 | 1 | sys:0: |
// | 4 | 组织管理 | 0 | page | 3 | 4 | 2 | sys:0:0: |
// | 5 | 角色管理 | 1 | page | 5 | 10 | 2 | sys:0:0: |
// | 6 | 权限管理 | 2 | page | 11 | 16 | 2 | sys:0:0: |
// | 7 | 操作日志 | 3 | page | 17 | 18 | 2 | sys:0:0: |
// | 8 | 系统设置 | 4 | page | 19 | 20 | 2 | sys:0:0: |
// | 9 | 新增 | 0 | button | 6 | 7 | 5 | sys:0:0:1: |
// | 10 | 新增 | 0 | button | 12 | 13 | 6 | sys:0:0:2: |
// | 11 | 编辑 | 1 | button | 8 | 9 | 5 | sys:0:0:1: |
// | 12 | 编辑 | 1 | button | 14 | 15 | 6 | sys:0:0:2: |
// | 13 | 新增 | 0 | button | 23 | 24 | 3 | sys:0:1: |
// | 14 | 编辑 | 1 | button | 25 | 26 | 3 | sys:0:1: |
// +----+-------------+-------+--------+-----+-----+----------+-------------+
SET @lft := 7;/*新部门的左值*/
SET @rgt := 8;/*新部门的右值*/
SET @level := 5;/*新部门的层级*/
begin;
/*将插入的后续边缘的节点左右数+2*/
UPDATE department SET lft=lft+2 WHERE lft > @lft;
UPDATE department SET rgt=rgt+2 WHERE rgt >= @lft;
/*插入数据*/
INSERT INTO department(name,lft,rgt,level) VALUES('新部门',@lft,@rgt,level);
/*新增影响行数为0时,必须回滚*/
commit;
/*rollback;*/
删除
SET @lft := 7;/*要删除的节点左值*/
SET @rgt := 8;/*要删除的节点右值*/
begin;
UPDATE department SET lft=lft-2 WHERE lft > @lft;
UPDATE department SET rgt=rgt-2 WHERE rgt > @lft;
/*删除节点*/
DELETE FROM department WHERE lft=@lft AND rgt=@rgt;
/*删除影响行数为0时,必须回滚*/
commit;
/*rollback*/
查询
查询所有子孙
SET @lft := 9;
SET @rgt := 18;
SELECT * FROM department WHERE lft BETWEEN @lft AND @rgt ORDER BY lft ASC;
// `SELECT user_name FROM temp_pro_user WHERE lft >= @lft AND lft <= @rgt ORDER BY lft ASC`;
/*例子中用BETWEEN将被查部门本身也查了出来。实际中可以用大于小于*/
查询下属总数
// 总数 = (右值 - 左值 - 1) / 2
查询一级下属
SET @level := 2;/*总经理的level*/
SET @lft := 2;/*总经理的左值*/
SET @rgt := 19;/*总经理的右值*/
SELECT * FROM department WHERE lft > @lft AND rgt < @rgt AND level = @level+1;
查询祖链路径
SET @lft := 3;/*产品部左值*/
SET @rgt := 8;/*产品部右值*/
SELECT * FROM department WHERE lft < @lft AND rgt > @rgt ORDER BY lft ASC;
查询后转成树结构
let list = [//模拟sql查出来的列表。
{id:1,name:'root',lft:1,rgt:8,level:1},
{id:2,name:'child',lft:2,rgt:7,level:2},
{id:3,name:'grandson',lft:3,rgt:4,level:3},
{id:4,name:'grandson2',lft:5,rgt:6,level:3}
];
let rights = [] /*类似于一个栈结构(后进先出)*/
let mp = {}
//list.sort((a,b) => a.lft - b.lft)//如果你在sql中没有进行排序,需要在这里给他排序。
list.forEach(item => {
if(rights.length > 0) {
while(rights[rights.length-1] < item.rgt) {
rights.splice(-1, 1)//从rights末尾去除
}
}
let _level = rights.length;
item._level = _level;
mp[_level] = item.id
item.parent_id = _level - 1 in mp ? mp[_level - 1] : null;//计算出上级部门编号
item.is_leaf = item.lft === item.rgt - 1;//判断是否叶子部门
rights.push(item.rgt)
})
/*上级部门计算出来了,和存parent_id的效果就一样了,后面只需要递归即可*/
/*递归函数 示例*/
let recursive = (_list, parent_id = null) => {
let _tree = [];
_list.forEach(item => {
if(item.parent_id === parent_id) {
let childs = recursive(_list, item.id)
_tree.push({
...item,
children: childs.length > 0 ? childs : (item.isLeaf ? null : [])
})
}
})
return _tree
}
console.log(recursive(list))
路径值(1/2/3/4/5/6/…)
查询难度低,需要拼接path内容,存储基本不会出现并发冲突
查询
// +----+----------+------------+
// | id | userName | path |
// +----+----------+------------+
// | 1 | Admin | 0 |
// | 2 | Ron | 0/1 |
// | 3 | Ron0 | 0/1/2 |
// | 4 | Bio | 0/1 |
// | 5 | Ron1 | 0/1/2 |
// | 6 | Bio0 | 0/1/4 |
// | 7 | Bio00 | 0/1/4/6 |
// | 8 | Bio000 | 0/1/4/6/7 |
// +----+----------+------------+
// 查询所有子结构内容(当前id: 2)
const @userPath = user.path + '/' + user.id + '%'
SELECT name FROM TABLENAME WHERE path like @userPath
// 查询所有父结构内容(当前id: 8)
const @pathArr = user.path.split('/')
SELECT name FROM TABLENAME WHERE id IN @pathArr
查询后转树状
/*递归函数 示例*/
let recursive = (_list, path = 0) => {
let _tree = [];
_list.forEach(item => {
if(item.path === path) {
let childs = recursive(_list, (path + '/' + item.id))
_tree.push({
...item,
children: childs.length > 0 ? childs : []
})
}
})
return _tree
}
console.log(recursive(list))